The generator matrix 1 0 1 1 2 1 1 1 X+2 1 1 2X+2 0 1 1 1 1 1 2X+2 2X+2 1 1 1 0 2X 3X X 3X+2 0 X 3X+2 X+2 3X 1 1 1 2X 1 1 1 1 1 1 1 1 1 1 1 1 1 2X 1 1 3X 0 0 1 1 X+2 1 X+3 2 3 1 X+1 X 1 1 2 X+1 2X X 1 1 1 3X+3 3X+2 2X+3 1 1 1 1 1 0 1 1 1 1 0 X+2 3X+3 2 3 X X+2 2X+2 X+1 2X+3 0 1 2X 3X+2 3X+3 X+3 2X+1 1 3X 2 1 1 0 0 X 0 3X X 3X 2X 0 2X 3X 3X+2 2X+2 3X+2 2X+2 2 3X+2 X+2 3X+2 X X+2 2 2X+2 0 2 2X X X X 3X+2 X+2 2X+2 2X+2 X+2 3X+2 2X X X+2 2 3X 2X 3X+2 0 X 3X 2X+2 0 2 X 2X 3X X X+2 2 3X+2 0 0 0 2X 0 2X 2X 2X 2X 0 0 2X 0 2X 0 0 0 0 0 2X 2X 2X 2X 2X 2X 0 0 2X 2X 2X 0 2X 0 0 2X 2X 0 2X 0 2X 2X 0 0 0 2X 2X 0 2X 0 0 2X 2X 0 2X 2X generates a code of length 55 over Z4[X]/(X^2+2) who´s minimum homogenous weight is 51. Homogenous weight enumerator: w(x)=1x^0+174x^51+488x^52+636x^53+631x^54+588x^55+515x^56+404x^57+279x^58+190x^59+83x^60+28x^61+48x^62+24x^63+4x^65+1x^68+1x^70+1x^74 The gray image is a code over GF(2) with n=440, k=12 and d=204. This code was found by Heurico 1.16 in 0.281 seconds.